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The population balance equation is solved for particles undergo-
ing a combination of growth, comminution, and collection. The
approximation method is to use a weighted Galerkin technique with
cubic B-splines and an implicit scheme for solving the system of
ordinary differential equations. The cubic splines are defined on a
graded mesh. The performance of the method is investigated by
solving a model problem with simple but nonsmooth kernels. The
weight function is chosen so that singularities in the equation can
be easily treated. A self-similar solution for comminuted particies
is shown to be a useful representation for the solution of the popula-
tion balance equation provided that this equation is solved over a
sufficiently long time interval. Stationary solutions of the equation
are obtained for a model that describes both particle comminution
and collection. ® 1995 Academic Press, Inc.

1. INTRODUCTION

Consider a dispersed phase system where random collisions
between particles lead to their subsequent breakup into smalier
particles and/or coalescence to form larger particles. In the
parlance of population balance the process of collision and
subsequent breakup of particles is referred to as comminution,
while the process of collision and subsequent coalescence of
particles is referred to as collection.

It is clear that comminution and collection are competing
processes that have opposite effects on the distribution of parti-
cle sizes, comminution leads to an increase in the number
of particles but a decrease in the average particle size, while
collection leads to a decrease in the number of particles but an
increase in the average particle size. Both effects may occur
in 2 number of physical systems, for example, gas bubbles in
a liquid (Barigou and Graves [2]) and liquid-liquid dispersions
{Tobin et al. [18]). For these systems a stationary (time-indepen-
dent) distribution of particle sizes can result. The particle size
distribution may provide useful insight into the effects of turbu-
lence that are responsible for particle breakup.

The random collision is a stochastic process. The stochastic
equations that describe particle comminution and collection can

* Present address.

be solved using Monte Carlo simulation techniques (see, for
example, Prince and Blanch [14]). An alternative approach is
to solve a deterministic equation, usually referred to as the
population balance equation. This equation describes the
changes in the average particle size distribution and can approx-
imately reproduce the true stochastic averages. A review of the
status of population balances and numerical techniques for
the solution of the equations is given by Ramkrishna [15]. A
successful numerical approach has been to use a finite element
method where the basis functions are chosen to be splines [9].

The aim of the present paper is to develop a numerical
method to solve the population balance equation for comminu-
tion, together with collection and growth, where the kernels as
well as the solution function can be either singular or non-
smooth. By nonsmooth it is meant that derivatives of the func-
tion are singular, for example, Vx is a nonsmooth function
with an infinite derivative at x = 0.

The numerical approach is to perform a spatial discretisation
of the equations using a projection technique on a space of
cubic splines. The flexibility of smoothest splines means that
these functions can be used to describe structure in the solution
function. The usual approach has been to determine the spline
coefficients from a collocation method [8, 9). Attempts have
been made using these methods to investigate the effects of
turbulence in the framework of the population balance equation
[16]. More recently, however, Erasmus ef @l. [7] make use of
cubic B-splines and a Galerkin technique to treat a nonsmooth
behaviour in the growth term of the Lifshitz—Slyozov equation
of continuity. The method is used to soilve the population bal-
ance equation for a combination of collection and growth (a
change in particle size that is not due to an interaction between
the particles themselves).

In the present paper the spline—Galerkin technique is used to
solve the population balance equation for comminuted particles,
Animportant consideration for comminuting particles is that the
growth of small particles due to the breakup of larger particles
may result in the emergence of a singularity in the particle size
distribution for particles of zero size. (This does not mean, how-
ever, that there are an infinite number of zero sized particles.)

305

0021-9991/95 $12.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.



306

The Galerkin technique reduces the problem of solving the
partial integro-differential equation to that of solving a system
of ordinary differential equations and evaluating moment inte-
grals of the kernel functions. An important difference between
the present method and other methods that are usually based on
some type of collocation approach is that while the collocation
method requires the evalvation of one-dimensional moment
integrals the moment integrals that arise in the Galerkin ap-
proach are two dimensional. Since the basis functions are cubic
polynomials the additional integral can be used more effectively
to smooth singular {on nonsmooth) behaviour in the kernels.
The technique is used to solve a simple model problem of
particle breakup as well as problems involving coalescence
and growth.

The population balance equation is described in Section 2,
where a simple model is chosen for growth, comminution and
collection. Section 3 describes the discretization of the equa-
tions, where special attention is given to treating singularities
that can arise. Numerical examples that test the performance
of the method, as well as some numerical results are presented
in Section 4. The conclusions are given in Section 5.

2. DYNAMICAL MODEL

Let n{v, t) dv be the number density, that is the number of
particles per unit volume with volumes that lie in the interval
between v and v + dv at time r. The number density function,
n(v, 1), satisfies the eguation

d d
Y (v, 1)+ ™ [Iwn(v, 1] o

= B, n(v, 1)) + €, n(v, n).

The second term on the left-hand side is a growth term that
describes the change in the number density function due to a
change in the particle size. Here I{(v) = v is the growth rate of
a particle of volume v. Terms % and € describe the change in
the number of particles due to comminution and collection,
respectively. It will be assumed that there is a sufficiently low
density of particles that only two-body collisions dominate the
comminution and collection processes.
The comminution term is

By, n(v, 1) = —stvIn(v, )
. 2.2)
+ j (@b, v @', D dv'.

Here b(v, v') dv is a dimensionless quantity that describes the
fraction of particles with volumes between v and v + dv that
result from the breakup of larger particles. We refer to &(v, v')
as the breakup function. The function s(v) is a selection func-
tion, with units of inverse time, that describes the rate at which
particles of volume v are broken into smaller fragments. The
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interpretation of the terms on the right-hand side of Eq. (2.2)

can be understood as follows: the first term represents the loss

of particles of volume v due to breakup into smaller particles,

while the second term represents the increase of particles of

volume v resulting from the breakup of particles larger than v,
The collection term is

Y, n(v, 1)) = %fﬂ W', O — o', D', v — v) dv’
(2.3)

— n(v, 1) j: (', D', v) dv’,

where k(v', v) is the collection kernel for two particles of
volume v’ and v and has units of volume/time. The collection
kernel describes both the geometry and dynamics of the collec-
tion mechanism. The first term on the right-hand side of Eq.
(2.3) represents the increase of particles of volume v due to
coalescence of two smaller particles. The factor of § prevents
overcounting. The second term represents the loss of particles
of volume v as a result of their coalescing with particles of
any volume.
The solution of Eq. (2.1) is subject to both initial and bound-
ary conditions. The initial condition is
1w, 0) = wylv), (2.4)
where wy(v) is the initial number density function. The boundary
condition is required only for the case of a nonzero growth
term, /. A physically reasonable boundary condition is
n0, 0 =10, (2.5)
which assumes that there are no particles of zero size.
It is important to recognize that the functions b and & satisty
certain constraints. The breakup function, b, satisfies the inte-
gral identity

[ Z b, vyau = 1. (2.6)
0
The breakup function is often written
WU v
b, vYy=——V¥ (—,), 2.7
v au v

where ¥ is a univariate function. The constraint on the breakup
function given by Eq. (2.6) means that ¥ satisfies the equation

1 d
o Tn Yixydx=1. 2.8)

This constraint on b (and W) ensures that the probability that
a particle of volume v will break up into smaller fragments
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with volumes that sum to v is unity. The constraint placed on
the collection kernel, &, is that it is a symmetric function of
its arguments.
kv, v’y = k(v', v), 2.9
indicating that the formation of a particle of volume (v + v")
from the coalescence of two smaller particles with volames ¢
and v’ is unique.
A useful representation of the particle distribution is obtained

by taking moments of the number density function. The ith
moment is defined by

M) = J: nio, O dv, nfv. 1) =nv,Hu.  (2.10)

{(Where no confusion should arise the zero subscript of ny(v, )
will be dropped.) The zeroth moment, My(f), corresponds to
the total number density of particles. The total initial number
density, My((), will be denoted by N;,. The first moment, M,(r),
corresponds to the total volume density. For zero growth,
I = 0, the constraints given by Egs. (2.6) and (2.9) lead to the
conservation of total volume density, namely

d _
M0 =0, .11)

Analytic solutions of the population balance equation have
been obtained for a number of special cases. Usually such a
solution can be found only for simple choices of the functions
[, k, 5, and W¥. In the present work it will be assumed that these
functions have the form

Kv) = F, (2.12)
HP
Ko.v) =3 @ + o). (2.13)
s(v) = G,v°, (2.14)
and
B
7 (1) = (3) : (2.15)
v v

The functions given above are typical in much of the work on
analytic solutions of the population balance equation [9, 12,
17]. Also the selection and breakup functions given above have
been used, within the context of a discrete comminution maodet,
to describe comminution of mineral bearing ores in mill grind-
ing (see, for example, Austin ef al. [1]). The combination of
comminution and collection for these situations has also been
suggested [10].

Similarity solutions for comminuted particles using the above
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selection and breakup functions have been reported by Kapur
{11] and for a wider class of breakup functions by Peterson
[13]. Since the similarity solution provides a useful insight into
the comminution equation a brief description of the similarity
solution obtained by Kapur f11] will now be given. We begin
by writing the comminution equation

a%n(u, =B, nv, n) (2.16)
in its more usual form
2,1 = —s@)m(,
5™ v, 5= —s(m(v,
217

+ J’: s(v')é%\lf (-;i,) nv', ndv'.

Note that, for a constant density p, the volume v and mass
m = pv are interchangable as independent variables. When the
mass variable is used in Eq. (2.17) it is usually referred to as
the mass balance equation.

The basic idea behind the similarity approach is to obtain
solutions that are the same when expressed in terms of a certain
transformed variable. In other words, the solutions are self-
similar to one another. In the case of Eq. (2.17) it is possible
to obtain such a similarity solution by intreducing the dimen-
sionless group

mv, ) =pllp), p= (2.18)

_v_
My’
From s(v) = G and Eq. (2.17), it follows that M, satisfies

D At) = —GueMsloys,

" (2.19)

where ¢ is a constant, Equation (2.19) has the solution

-l
Myt = + G, . 2.20
28 ( ML) ucat) (2.20)
The function Z{p) satisfies
d )
cpa,;Z(P) = —~(p"+ c)(p)
(2.21)

= ’ai E ! r
+[7p 8P‘P(p,)2(p)dp-

In the special case W(v/v') = (v/v’)? this equation has the so-
lution
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Z{p) = Cop? texp ( Z—Z), (2.22)
where
_ oM, ]
= G T (@) (223)
| _I'Bly |
vy [F((B - ma)] ‘ @249

and T is the gamma function.

3. APPROXIMATION METHOD

We begin this section by writing the population balance
equation in a dimensionless form that is suitable for the spline
approximation. Let { be a characteristic volume that represents
some average particle volume. Since the actual particle volumes
can vary over several orders of magnitude it is convenient to
introduce a dimensionless volume on a finite interval x € [ 1,
1] via a nonlinear mapping

bt

A dimensionless variable of the time is 7 = Nyt, where y is
a characteristic rate constant. The dependent variable n(v, 1) is
now transformed to a function of dimensionless argurnents,

Alx, T = n(v, ). (3.2}

7 2
Ny(1 — x)?

The inmitial function wy(v) = n(z, 0) is similarly transformed
so that

) = £

2
T (3.3)

W(}(U).

The transformed function 7i(x, 7) satisfies the dimensionless
population balance equation

%, )+ Ao o), 7]
T X (3.4)
= Mb(x, filx, I) + AE(x, Alx, ),

where

b(x, Aix, 7)) = —a(XOAx, 7)

+ f' (e )8x, ¥V, 7) d, (3.5)
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_ 2
&x, Ailx, 7)) = %J’x_] Alx’, D(u, Tir(x’, 1) (i — Z) dx'

(7 [ A, Pk, 0 (3.6)
u = u(x', x) is the transformed volume difference
CamTaae O
and
alx) = (1 + 071 — )2, (3.8)
a(x) = G fi) (3.9)

1\ (1=8)
S(x, &) = 28 (1”) . (3.10)

(1 + )21 - x)F\1 — X

+ P AP
k(' x) = ((1 x) + (1 ”,) ) 3.11)
1—x 1—x
The dimensionless rate constants are
! & &
A= F, Ay = =>H. 3.12
a 2N0X ¥ h NQX Ga! /\(‘ Y [ ( )

The constants A,, A,, and A. can be used to determine the
relative importance of dynamic processes in the population
balance equation. For example, a dimensionless measure of the
comminution/collection rates is given by the ratio

(3.13)

For A;, ¥ | comminution dominants the collection process,
while for A, <€ 1 collection will dominate comminution. For
A,. = 1 the particle size spectrum is subject to approximately
equal rates of comminution and collection.

Discretisation of the dimensionless population balance equa-
tion is carried out on a space of cubic splines. The assumption
here is that 7i(x, 7) falls off sufficiently rapidly that

(1—x"7x,n—0 asx— lforv>( (3.14)
Thus there are no singularities at the right-hand side of the
interval at x = 1. Care is taken, however, to ensure that spurious
singularities do not arise in the discretization of the equations,
that is, when A(x, 7) is approximated by a spline. For this
purpose a cutoff parameter, x,, is introduced so that the interval
over which the problem is defined now becomes [—1, x.J. The
actual choice of cutoff parameter will depend on the problem
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to be solved, the mapping parameter ¢, and the total time interval
over which the solution is being sought.

Cubic B-splines on x € [—1, x.] are constructed as follows:
The interval is partitioned by m nodal points {x;}%,, where
-1 =x < x <. <x, = x. Additional points are placed
at the ends of this interval, namely, x;, = x_; = x = x
and X, = X, = Xn40 = X,53. Define

BE”(x) _ {(x,- —x-)7

0, otherwise.

X <Sx=x,

(3.15)

The B-splines of order ! (degree [ — 1) are generated by the
stable iterative method of Cox [4] and deBoor [5],

(r — x-)BS ) — (= 0B )

X T Xiey

Bl'(x) = (3.16)

Note that the index on the cubic B-splines runs from i = 2, ...,
m + 3. A convenient notation is B:(x) = B,(x) to denote the
cubic B-spline which is nonzero over the interval (x; 5, x;12) 50
that the index now runs fromi =0, ..., m + L.

The (unknown) solution is approximated by the linear combi-
nation

mtl

fialx, ) = 20 FADBAX). (317

Substituting this approximation for the solution in the popula-
tion balance equation leads to a residual function

) = 2=, 1)+ Ay [y C8, 7]
(3.18)
= Ab(x, Fglx, 1)) — AZ(x, ialx, 7).

For the case A, = 0 the coefficients { £;}/- are obtained from
a weighted Galerkin method by solving the (m + 2) equations

[ B Do dr =0, k=0,.,n+ 1), (3.19)

where w(x) is the weight factor. For the case where A, # 0
the boundary condition is incorporated by replacing the first
equation (for £ = 0) by a discrete form of the boundary condi-
tion. This modification will be described after performing the
temporal discretization of the equations,

The problem now reduces to that of solving the system of
ordinary differential equations

Li(D) = —(LA + LB + AL(DCE(T), (3.20)

309

for the expansion coefficients £ = (£, fi, .... fur)". The matrices
L, A, B, and C are given by

Ly = [* BB (o) dx, (.21)
Ay = [ BB/ (D) ds

+ [* BB M e dr, (3.22)
By = [ BOBMoWwk) dr

- [ Bow ( [ Beto, x')a’x’) dx, (323)

and

Ciie= % r_cl Bi(xyw(x)

l._ﬁ
1_

2
(fx_iBj(u)Bk(x’)K(x’,u)( )dx’)dx (3.24)

u
x
- ji Bi(x)Bj(x)oxx} (Iicl Bix')x(x', x} dx') dx.

The moment integrals A and B may contain singular integ-
rands. For the case 0 < y < | the growth term in Eq. (2.12)
is a nonsmooth function with an infinite derivative at x = —1,
A method for treating this type of nonsmooth behaviour has
been dealt with in the work of Erasmus ef @l [7] and can
easily be incorporated into the present method for solving the
comminution/collection equation. Singularities arising from the
growth term will therefore not be discussed further in this paper.
Singularities that arise in the communation term, however,
require further consideration and a more detailed invesligation
of these singularities will now be given.

Following from Eq. (3.10} the dimensionless breakup func-
tion factorizes in the variables x and x’ and the comminution
coefficient becomes

B, =

- f N (1 - x)& B,(0)B;(x)w(x) dx

1 —x

Bi(x)w(x)
(1 + )@ A1 — x)f

. + \ {(1+a—8)
U (i _“;) Bj(x')dx') dr.

Difficulties can arise in the second term of Eq. (3.25) for
particular choices of the exponents & and $. The second term
may contain a number of singularities. For example, if 8 < 2

+28* (3.25)
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the outer integral contains a singularity at x = ~1. Also the
inner integral contains a singular term if 8 > (1 + a). To
ensure that this second singularity does not occur the value of
B will be restricted by the constraint

B=1+a. (3.26)
This means that the condition necessary for a singulanity at
x = ~1 is satisfied for & << 1. The unwanted singularity in the
outer integral is removed by choosing a weight facter w(x) =
(1 + x3* "

The exponent p determines the shape of the coalescence
function and therefore the underlying collection mechanism.
There is no restriction on p, which in principle can take any
value including a negative value. Special cases for the collection
kernel, which will be used in the present study, include the
constant kernel, p = 0, and the Golovin kernel, p = 1. These
special cases may be considered as two limiting cases of a
diffusion process for coalescence. Values of p that lie outside
this range will therefore not be considered.

Discretizing the initial condition (2.4) leads to an expression
for the initial spline coefficients { f;{0))14),

m+1

Z@ B, (0)f;(0) = W(x), (3.27

One way to obtain these coefficients is to collocate and solve
the algebraic system

m+1

3 Bu)f(0) = fin(u). (3.28)

The collocation approach is useful if the initial condition is
given only on a set of data points, Wy(#;), rather than as the
function Wy(x). Note, however, that to obtain a solvable system
requires at least the same number of collocation points {,} as
there are coefficients { £i(0)}. {Additional collocation points
can be used in which case a least squares approximation is
employed to determine the coefficients.) There is some freedom
in the choice of the collocation points, although in practice the
placement of these points is restricted by the Schoenberg—
Whitney theorem (de Boor [6, p. 200, Theorem XI11.1]) which
requires that u; € (x;,_,, x;42). The choice adopted in the present
paper is to place one collocation point at each nodal point. The
two additional points, needed to cbtain a solvable system, are
placed at the midpoint of each end interval. Thus

Uy = X3 u; = 3x; + x);
u = x, i=2 ..,m—-1 (3.29)
Uy — %(xm + -xm+1); Uy = Xy

Next we turn to the question of temporal discretization. We
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introduce the time step Ar. Time is now expressed in terms
of an index r = 7/A7, while the coefficient f;, denotes an
approximation to f;( 7).

A classical one-step #-method gives

Lfy = OAT((AA + MBIy — ASLCEL)

(3.30)
=Lf + (1 — HAT((AA + ABM, — AITCE).
Here the value of ¢ can be varied from 8 = 0 (explicit scheme)
to 8 = 1 (fully implicit scheme). The value of § = § gives the
Crank—Nicolson method. The set £, is used as an initial estimate.
An implicit scheme is recommended [3] for solving the
comminution/collection equation.
The required boundary condition for the case A, # 0 has the
discrete approximation

3
ZU B~ 1)1 = 0. (3.31)

This replaces the first equation (for ¥ = 0) in the algebraic
system (3.19).

The source code is written in Fortran 90 and makes full use
of features such as modules, array syntax, and dynamic storage
allocation. Unfortunately, at present Fortran 90 does not support
a standard library and a number of routines had to be constructed
for the purpose of solving the discrete equations. Gauss elimina-
tion is used to solve the algebraic equations, while the nonlinear
equations are solved using an iterative method. Integrals are
evaluated numerically using a standard Gauss—Legendre quad-
rature formula,

4. NUMERICAL EXAMPLES

An initial condition is required for the numerical examples.
The family of initial conditions used by Scott [17] is

=%§+_lﬂ(z)§ (_z )
w0} o0 T2+ D \ou exp UU(§+1) . 4.1)

where £ = 0. The moments are My0) = N, and M,(0) = v N,.
Thus vy is the initial average particle volume. Although the
case & = 0 does not satisfy the boundary condition in Eq. (2.5)
it can be used for solutions that do not include the growth
term. The parameters Ny = 1 and v, = 2 are used for all
numerical calculations.

A number of simple test problems are now considered. These
test problems are referred to as Examples 1 through 7. The
parameter y = 1 is used in all calculations so that time is
measured as a dimensionless quantity. In addition to the initial
condition parameter, £, and the volume scale parameter, £, the
model has up to four shape parameters «, 3, p, and -y as well
as the three rate constants G,, H,, and F,. For convenience
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TABLE 1

Tabulation of Numerical Examples

Example 3 { o B p ¥ G, H, F,
1 t 1 0.8 1.2 _ = 1 — —
2 0 1 0.8 1.2 0 — 1 1 —
3 1 I 0.8 1.2 ] — 1 1 -
4 1 1 0.8 1.2 0 — 2 i —
5 1 1 0.8 1.2 1 — 1 1 —
6 ] 10 0.8 1.2 0 b 0.1585 1 |

Note. Example 1 is the *‘pure’’ comminution equation with an initial condi-
fion given by Eq. (4.1) with £ = |. Example 2 is a comminution plus collection
equation with a constant cotlection kernel and initial condition £ = (. Example
3 is the same as Example 2 but with initial condition £ = 1. In Example 4
the comminution term is a factor two larger than in Example 3. Example 5 is
a comminution plus collection equation with a Golovin collection kernel.
Example 6 is an equation that combines comminution, collection (with a
constant kernel), and growth.

these parameters have been tabulated in Table 1. A cuttoff
parameter x, = 0.96 is used for all test problems. An implicit
scheme (# = 1) is used to solve the system (3.30) with time
step Ar = 0.01.

Our first results concern the comminution equation (2.16) of
Example 1. This example is used to test the performance of
the numerical method for treating the problem of particie com-
minution.

The choice of nodal points is expected to play an important
role in determining the accuracy of the numerical approxima-
tion, Nodal points in the cubic spline approximation must be
placed in the interval [—1, x.]. For this purpose a set of
{m — 2) points, {g;} € {—1, 1], are mapped 1o the nodal points
{x} € [—1, x] using the transformation

x={x.+Dg+W2—-1, i=2,..

m—1. (42)

Leth = 2/(m — 1). A uniform distribution of points is given by

g=G—-Dh—1, i=2,..,m—1 (4.3)
Figure | shows the computed solution, fi(x, 7), using m =
38 nodes on a uniformly spaced mesh. Curves are shown at
dimensionless time intervals of (.5, Tt is clear that the computed
solution is oscillating at the left-hand side of the interval. The
oscillation becomes worse as time increases. The oscillatory
behaviour is caused by a steep slope in the solution function
on the left-hand end of the interval (near x = —1). Indeed, the
similarity solution (Eq. (2.22)) has the asymptotic behaviour
Z(p) — p*? as p — 0. One way to improve the accuracy of
the numerical solution on a mesh of given size is to concentrate
the nodal points in a region where the solution function has a
rapidly varying structure. In the present case this can be
achieved, for example, by choosing the graded mesh
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Ny {x,T)
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0.5

T
-0.8

1
-0.6

FIG. 1. Solution of the comminution equation (Example 1) using m = 38
nodal points on a uniform mesh. Curves show the result for #,(x, 7) at time
intervals of 0.5 up 1o 7= 4.

g = —cos ((i—l)hg), i=2.m-1. (@44

Other choices of mesh are also possible (for example, an equi-
distribution of points based on arc length and curvatures [8]).
Figure 2 shows the computed solution using the graded mesh
(4.4). Since the graded mesh provides a more accurate solution
of the comminution problem than the mesh based on uniformly
distributed nodes it is therefore used for all subsequent calcula-
t1ons.

2.0
357 t=a0
3.0q{ 3.5

3.0
2.5

2.5

n1(xit)

2.0+ l\'\
2.0 N\

N \\\\\

.5

02 00 02 04 08B 08

FiG. 2. Same as Fig. 1 but using the graded mesh in Eq. (4.4).
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TABLE 11

Computed Moments M( 1), M\(7), and My(71)
for the Comminution Equation of Example 1

D. EYRE

TABLE IV

Computed Solution of the Comminution Model
(Example 1) at T = 4 Using m + 2 Cubi¢c B-Splines

T M(7) Mi(7) Mi(7) m+ 2 Mo(4) My4)
0.0 1.00 2.000 6.000 20 35.49 0.589
0.5 4,88 2.006 3.408 30 37.42 0.586
1.0 9.17 2.010 2234 40 38.28 0.584
1.5 13.77 2012 1.605 60 3892 0.583
20 18.60 2.015 1.227 80 39,09 0.582
235 23.62 2.017 0.979 100 39.15 0.582
30 28.80 2.018 0.808
35 3412 2.019 0.682 Nete. The solution has been normalized so that M, = 2.0 at each time step.
4.0 3953 2021 0.588

The computed moments, M7}, M,(7), and M,( 1), for exam-
ple 1 are tabulated in Table 1I. Here m = 98 nodes have
been used. The total number of particles, My( 1), increases with
increasing time, while the moment M,(7) decreases with in-
creasing time. The total volume, on the other hand, is a con-
served quantity with the value M, = 2. The small deviation of
the computed solution from this value (about 1% at 7 = 4) is
due to the numerical approximation. In order to check conver-
gence of the numerical method Table III shows the results at
7 = 4for different vaiues of m. Also shown are the work units
as measured by the CPU time. The work unit is an indication
of the computational effort required to solve the equation. It can
be seen that the computational effort increases approximately
quadratically with increasing mesh size. Equation (2.20) gives
a value of My(4) = 0.613. This, however, is predicted by the
similarity method and can therefore only be considered an
approximation to the exact value of the moment M»(4). The
computed moments of M3(4) show approximately linear conver-
gence towards a value slightly smaller than that predicted by
the similarity method.

Conservation of volume can be built into the numerical
method by renormalizing the approximate solution after a num-

TABLE I1I

Computed Solution of the Comminution Model (Example 1} at
7= 4 Using m + 2 Cubic B-splines

m+2 M4 M4y Ma(4) Work units
20 37.68 2.123 0.626 50
30 38.85 2.077 0.608 102
40 39.34 2.055 0.601 190
60 39.61 2.036 0.593 455
80 39.60 2.026 0.590 042
100 39.55 2.021 0.588 1632

Note. The exact moment M(4) = 2.0 while Eq. (2.20) of the similarity
method predicts a value Mx{(4) = 0.613, Work units are measured by the CPU
time (in seconds).

ber of tirne steps. Table IV shows the computed moments My (4)
and M,(4) obtained by normalizing the approximate solution
after each time step, A7 = 0.01. (The results shown in Table
IV did not change significantly when the solution was normal-
ized after longer time intervals of 7 = 0.5.) The results for
M,{4) show a marked improvement for smaller values of m,
while the results for My(4) show no significant improvement
when compared with the unnormalized results. The reason for
this is that M,(4) emphasises the large particle size behaviour
of the particle size distribution which is better reproduced by
the normalization procedure. On the other hand, My(4) is sensi-
tive to the solution function at the small particle end of the
particle size spectrum. In the region the normalization proce-
dure does not improve the spline approximation of the singular
solution function,

It should be remarked that the degree to which the unnormal-
ized solution satisfies the conservation rule is a measure of how
well the method is able to obtain a solution of the population
balance equation. Given the above discussion it is clear that
this provides a useful check on the computed solution in cases
where the exact solution is singular.

Figure 3 shows the solution to Example 1 as a function of
the variable p = v/M,(r) plotted on a log scale. Curves are
shown for the computed solution Z(p) at dimensionless time
intervals of 0.5. These curves correspond to the same solution
as those of Fig. 2. The similarity solution of Eq. (2.22) is also
shown by a broken line. Comparing the long time behaviour
of the numerical solution with the similarity sclution it can be
seen that, at least for large values of p, the curves in Fig. 3
converge towards the similarity solution which it approaches
after a time 7 > 1. However, in the region of small p it is not
clear that the similarity solution is reproduced by the numerical
results. The reason for this is that the spline function is being
used to approximate a singular function at p = 0. Nevertheless,
the computed solution does continue to increase towards the
similarity solution as rincreases. Comparing the results shown
in Fig. 2 with those in Fig. 3 it can be seen that the similarity
solution emerges only after the initial function (labeled as
7 = 0 in Fig. 2) is mostly “*washed out’” by the effects of
particle comminution,
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FIG. 3. Soiution of the comminution equation (Example 1). Curves show
the result for Z(p) at time intervals of (1.5, Broken line is the similarity solution
of Equation (2.22).

Next we turn to the comminution/collection equation. Fig-
ures 4 to 7 show the computed solutions for Examples 2 to 5,
respectively. The first results are for a constant collection kernel
and a dimensionless comminution/collection rate of A,, = 1.
Figure 4 shows 7 (x, 7) for an initial condition £ = 0 (Example
2). The computed solution is shown at dimensionless time
intervals of 0.2, After about 7 = 2 the computed solution does
not change. This stationary solution results from a balance
between the effects of particle comminution and collection.
Figure 5 shows the computed solution starting from a different
initial condition £ = 1 (Example 3). Again the same stationary

4.0

3.5 1

3.0 o

2.5
2.0 4

]

1.0

0
t=9,02,04,06,08

° T - T T T T T T T

0.8 -06 -04 02 00 02 04 06 08

A x,T)

FIG. 4. Solution of the comminution/collection equation with initial pa-
rameter £ = 0 (Example 2). Curves show the result for 7 \(x, T) at time intervals
of 0.2,
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FIG. 5. Solution of the comminution/collection equation with initial pa-
rameter £ = 1 (Example 3, Example 2).

solution is obtained which would suggest that this stationary
solution is an attractor. The computed moments, My(r) and
M (), for Example 3 are tabulated in Table V. The total number
of particles is seen to converge towards a value of M, =~ 4.
Results at 7 = 2 for different values of m are shown in Table
VL. Convergence of the moments is similar to that found in
the case of “‘pure’’ comminution. For this nonlinear problem,
however, the work units increase approximately with the cube
of the mesh size. By changing the dimensionless comminution/
collection ratio, a different stationary solution is obtained. Fig-
ure 6 shows the computed solution for A, = 2 (Example 4).
Clearly increasing the rate of comminution has produced a
stationary solution that has a larger number of small particles
and a smaller number of large particles. In other words the
distribution of particle sizes has moved to the left. Figure 7

TABLE V

Computed Moments My(7) and M7} for the
Comminution/Collection Eguation of Example 3

T My(7) M(7)
0.0 1.00 2.000
0.2 226 2.003
0.4 3.11 2.006
0.6 3.61 2.008
0.8 3.88 2.011
1.0 4.02 2.013
1.2 4.09 2015
14 4.12 2017
1.6 4.14 2.019
1.8 4.16 2.021
2.0 4.16 2.023
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TABLE VI +0
Computed Solution of the Comminution/Coalescence Model 3.54
(Example 3) at 7 = 2 Using m + 2 Cubic B-Splines
3.0 -
m+ 2 My(2) M(2) Work units
25 t=0,02,04,06,08
20 4.04 2.139 116 o
30 4.08 2.036 319 L4
40 410 2062 688 * 201
60 4.14 2.040 2182 =
80 4.15 2.029 5107 1.51
100 4.16 2.023 10061
1.0
Note. The exact moment M(2) = 2.0. Work units are measured by the CPU
time (in seconds).
0.5
0 T T T T T T L T T
08 06 04 02 00 02 04 06 08

shows the result for the Golovin collection kernel {Example
5). Here the distribution of particle sizes is spread out to produce
a stationary solution with a more flattened distribution profile.

Our final results concern the inclusion of particle growth,
Again the dimensionless comminution/collection rate is chosen
to be Ay, = 1 (Example 6). Figure 8 shows the computed
solution for this problem. Note that due to the effects of particle
growth the area enclosed by the curves for #,(x, 7) increases
with increasing 7. This is in marked contrast to the previous
examples, where M; was a conserved guantity for the population
balance equation. Due to the presence of a growth term the
particle size distribution does not reach a stationary solution.

5. CONCLUSIONS

A spline—Galerkin method has been described for the accu-
rate numerical sclution of the population balance equation for
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t=0,0.2,04,0.6,08

T T T T T

02 00 02 04 086 08
X

T T ¥
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FIG. 6. Solution of the comminution/collection equation with comminu-
tion term a factor of two larger than in Example 3 (Example 4),

X

FIG. 7. Sclution of the comminution/collection equation for a Golovin
collection kernel (Example 5).

growth, comminution, and collection of particles. To obtain
accurate solutions for comminuted particles it was found neces-
sary to introduce a graded mesh. The similarity solution can
provide a useful representation for the solution of the population
balance equation for comminuted particles, but only on the
large particle end of the particle size spectrum and only for
large times, 7 2 1. For short times, 7= 1, and particularly for
small particles, the similarity solution may not be accurate
because the initial function can still influence the comminu-
tion process.

An important result for particles undergoing a combination of

16

ﬁ‘l(x!t)

FIG.8. Solution of the comminution/collection equation with growth (Ex-
ample 6). Corves show #y(x, 7) at time intervals of 0.2 up to 7= 2.
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both comminution and collection is the emergence of stationary
solutions to the population balance equation. Here the effects
of breakup are balanced by those of particle coalescence, Sta-
tionary solutions are readily obtained by the numerical method
and are shown to be stable against changes in the initial function,
The effects of particle growth can prevent stationary solutions
trom developing, however. The spline—Galerkin method should
provide a useful tool with which to investigate numerical solu-
tions of the population balance equation that arise in physical
situations, for example, in gas—-liquid and liquid—liquid disper-
sioms.
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